<acronym id="kmucg"><center id="kmucg"></center></acronym>
<acronym id="kmucg"><small id="kmucg"></small></acronym>
<acronym id="kmucg"><small id="kmucg"></small></acronym>
<acronym id="kmucg"><center id="kmucg"></center></acronym><acronym id="kmucg"><center id="kmucg"></center></acronym>
當前位置: 首頁 >> 國際交流 >> 國際合作項目 >> 正文

麻省理工學院方絢萊教授學術報告

Super User ???發布于:2018/03/07

報告題目:Architectured Metamaterials: from Tunable Thermal Expansion to Microvascular Tissue Scaffolding
報告人:Nicolas X. Fang(方絢萊) 教授    麻省理工學院機械工程系
報告時間:2018年3月9日(周五)上午 9:30-11:30
地點:機械學院401報告廳
聯系人:段輝高 教授
歡迎廣大師生參加!


主講人簡介:Prof. Nicolas Fang (方絢萊),麻省理工學院機械工程系教授。分別在南京大學獲得物理學學士和碩士學位,在美國加州大學洛杉磯分校(UCLA)獲得機械工程博士學位。2004年至2010年在伊利諾斯大學香檳分校(UIUC)任教,2011年1月加入MIT,主要研究方向為納米制造與納米光子學。曾先后獲得ASME Chao and Trigger青年制造工程師獎、國際光學聯盟的ICO獎、NSF CAREER Award及由MIT科技評論評選出的35位青年發明家獎(2008年)。
報告摘要:Three-dimensional lightweight material building blocks, through the combination of molecular design of material behavior and microscale geometric patterning, show promise to revolutionize the ability to dissipate energy and manipulate wave propagation. Such materials are desirable for a broad array of applications such as structural components, catalysts supports and energy efficient materials.
In this seminar, I will present our development of three-dimensional micro/nanofabrication technique, projection microstereolithography (PuSL), to enable design and exploration of digitally coded multifunctional and multimaterial lightweight metastructures at unprecedented dimensions. The ultra-high resolution and multi-material capabilities of the 3D printing system and the modeling tools developed can be used to design and fabricate architected materials for combined functions, including energy absorption, actuation/morphing, and micro-scale bioreactors for tissue engineering. These structures show promise on focusing and rerouting acoustic waves through broadband and highly transparent metamaterials. I will also discuss the development of engineered, three dimensional arrays of copolymer fibers that serve as mimetics of neuronal axons, using a combination of materials engineering and high-resolution 3D microfabrication, which enable study of OPC engagement and subsequent myelination in vitro.


35选7